Title Slide

- Title: Database Backup and Replication
- Subtitle: Concepts, Types, Implementation, and Best Practices
- Visual: Database icon with arrows indicating backup & replication

Learning Objectives

- Understand backup types: full, incremental, differential
- Learn replication strategies: master-slave, master-master
- Implement practical examples in Oracle, MSSQL, MySQL
- Execute step-by-step lab commands
- Monitor and troubleshoot

Why Backup & Replication are Important

- Prevent data loss: hardware failure, human error, malware
- Ensure high availability
- Regulatory compliance
- Visual: Flow diagram of "Database → Backup/Replication → Recovery"

Database Backup Types (with Diagram)

Backup Type	Description	Pros	Cons	Example
Full	IEnfire DB	Complete recovery	II arge closs	Oracle RMAN, MSSQL, MySQL dump
uncrementat	Only changed data	Fast, less storage	full+incrementals	Oracle Level 1, MSSQL Differential, MySQL binlogs
II nijerenijai j		Faster restore than incremental	Larger than incremental	MSSQL Differential, Oracle Level 1

Oracle Backup Example (Lab Steps)

Full Backup:

```
RMAN> CONNECT TARGET / RMAN> BACKUP DATABASE;
```

Incremental Backup (Level 1):

RMAN> BACKUP INCREMENTAL LEVEL 1 DATABASE;

Differential Backup Simulation:

• Level 1 incremental since last full

Visual Diagram: Full backup → Level 1 Incremental → Restore flow

MSSQL Backup Example

Full Backup:

```
BACKUP DATABASE MyDB
TO DISK = 'C:\Backup\MyDB full.bak';
```

Differential Backup:

```
BACKUP DATABASE MyDB
TO DISK = 'C:\Backup\MyDB_diff.bak'
WITH DIFFERENTIAL;
```

Incremental Backup: Handled using log backups

```
BACKUP LOG MyDB TO DISK='C:\Backup\MyDB log.trn';
```

Diagram: Backup chain illustration

MySQL Backup Example

Full Backup using mysqldump:

```
mysqldump -u root -p mydb > mydb full.sql
```

Incremental using binary logs:

```
mysqlbinlog mysql-bin.000001 > binlog.sql
```

Restore Example:

```
mysql -u root -p mydb < mydb full.sql</pre>
```

Diagram: Full + binlog incremental restore flow

Backup Strategies

- Full + Incremental (weekly full + daily incrementals)
- Backup retention policies
- Local + offsite backups
- Automation: RMAN scripts, SQL Agent jobs, cron jobs

• Diagram: Backup schedule timeline

Replication Concepts

- Master-Slave (Primary-Secondary)
- Master-Master (Multi-Master)
- Synchronous vs Asynchronous
- Visual: Arrows showing data replication flow

Oracle Replication Example

Data Guard (Physical Standby):

- 1. Configure primary and standby database
- 2. Set up redo log shipping
- 3. Activate managed recovery

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

Visual Diagram: Primary DB → Standby DB → Failover

MSSQL Replication Example

Transactional Replication Steps:

- 1. Configure Publisher, Distributor, Subscriber
- 2. Select articles (tables/views)
- 3. Set schedule
- 4. Monitor replication agent

Commands/Tools: SSMS wizard

Diagram: Publisher → Distributor → Subscriber

MySQL Replication Example

Asynchronous Master-Slave Setup:

- 1. Enable binary logging on master: log bin=mysql-bin
- 2. Create replication user:

```
CREATE USER 'repl'@'%' IDENTIFIED BY 'password';
GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%';
```

- 3. Get master status: SHOW MASTER STATUS;
- 4. Configure slave:

```
CHANGE MASTER TO
   MASTER_HOST='master_ip',
```

```
MASTER_USER='repl',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-bin.000001',
MASTER_LOG_POS=107;
START_SLAVE;
```

5. Monitor replication: SHOW SLAVE STATUS\G; **Diagram:** Master → Slave replication flow

Best Practices

- Test backup & replication regularly
- Encrypt backups & traffic
- Offsite copies
- Monitor replication lag
- Document procedures

Visual: Checklist diagram

Troubleshooting Common Issues

- Disk space full
- Network latency → replication lag
- Backup failures due to locks or permissions
- Tips: Logging, alerts, automation

Lab / Case Study

- Scenario: Bank DB 2TB, high availability
- Solution:
 - Weekly full + daily incremental
 - Oracle Data Guard standby
 - Monitor replication logs
- Step-by-step commands included

Summary

- Backups: Recovery, replication: Availability
- Choose type based on RTO/RPO
- Automate, monitor, test

References

- Oracle RMAN / Data Guard docs
- MSSQL Backup & Replication guide
- MySQL Replication docs
- Blogs/tutorials on automation