
Introduction to SQL Queries and Practical Examples
1. Introduction to SQL

• SQL (Structured Query Language) is a standard language for interacting with
relational databases.

• Key operations in SQL are summarized by CRUD:
o C – Create → INSERT
o R – Read → SELECT
o U – Update → UPDATE
o D – Delete → DELETE

• SQL is used in databases like MySQL, Oracle, SQL Server, PostgreSQL, etc.

2. SQL Query Types
2.1 Data Definition Language (DDL)
Used to define database structure:

• CREATE → Create tables or databases
• ALTER → Modify table structure
• DROP → Delete tables or databases
• TRUNCATE → Remove all data from a table

Example:
-- Create a table
CREATE TABLE Students (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT,
 Grade VARCHAR(5)
);

-- Alter table to add a new column
ALTER TABLE Students ADD COLUMN Email VARCHAR(50);

-- Drop table
DROP TABLE Students;

2.2 Data Manipulation Language (DML)
Used to manipulate data in tables:

• INSERT → Add new records
• UPDATE → Modify existing records
• DELETE → Remove records

Example:
-- Insert data
INSERT INTO Students (StudentID, Name, Age, Grade)
VALUES (1, 'Ali', 12, 'A');

-- Update data
UPDATE Students
SET Age = 13
WHERE StudentID = 1;

-- Delete data
DELETE FROM Students
WHERE StudentID = 1;

2.3 Data Query Language (DQL)
• SELECT → Read/retrieve data
• You can use WHERE, ORDER BY, GROUP BY, HAVING clauses.

Example:
-- Select all data
SELECT * FROM Students;

-- Select specific columns
SELECT Name, Grade FROM Students;

-- Filtering with WHERE
SELECT * FROM Students
WHERE Age > 12;

-- Ordering
SELECT * FROM Students
ORDER BY Name ASC;

-- Aggregate functions
SELECT Grade, COUNT(*) AS TotalStudents
FROM Students
GROUP BY Grade
HAVING COUNT(*) > 1;

2.4 Data Control Language (DCL)
• GRANT → Give permissions
• REVOKE → Remove permissions

Example:
GRANT SELECT, INSERT ON Students TO 'user1';
REVOKE INSERT ON Students FROM 'user1';

3. SQL Query Concepts
3.1 Filtering Data

• Use WHERE with operators: =, <>, >, <, >=, <=
• Use AND, OR, NOT for multiple conditions

SELECT * FROM Students
WHERE Age >= 12 AND Grade = 'A';

3.2 Pattern Matching
• Use LIKE with % and _

-- Names starting with 'A'
SELECT * FROM Students
WHERE Name LIKE 'A%';

-- Names with second letter 'l'
SELECT * FROM Students
WHERE Name LIKE '_l%';

3.3 Null Handling
• IS NULL and IS NOT NULL

SELECT * FROM Students
WHERE Email IS NULL;

3.4 Joins
• Combine multiple tables

o INNER JOIN → Only matching rows
o LEFT JOIN → All rows from left table
o RIGHT JOIN → All rows from right table
o FULL OUTER JOIN → All rows from both tables

Example:
CREATE TABLE Classes (
 ClassID INT PRIMARY KEY,
 ClassName VARCHAR(50)
);

-- Inner Join example
SELECT Students.Name, Classes.ClassName
FROM Students
INNER JOIN Classes ON Students.StudentID = Classes.ClassID;

3.5 Subqueries
• Nested query inside another query

SELECT Name FROM Students
WHERE Age > (SELECT AVG(Age) FROM Students);

3.6 SQL Functions
• Aggregate: SUM, COUNT, AVG, MIN, MAX
• String: CONCAT, LENGTH, UPPER, LOWER
• Date: NOW(), CURDATE(), DATE_ADD()

Example:
SELECT COUNT(*) AS TotalStudents FROM Students;
SELECT CONCAT(Name, ' (', Grade, ')') AS Info FROM Students;
SELECT NOW() AS CurrentDateTime;

4. Practical Exercises
Here are exercises to practice SQL:
Exercise 1: Create a table Employees with columns: EmpID, Name, Salary, Department.
Exercise 2: Insert 5 employee records.
Exercise 3: Retrieve all employees with salary > 50000.
Exercise 4: Update salary of employee EmpID=3 to 60000.
Exercise 5: Delete an employee record with EmpID=5.
Exercise 6: Retrieve employees ordered by Salary DESC.
Exercise 7: Find the total salary of each department.
Exercise 8: Create a table Departments and join with Employees to list employee names with
department names.

5. Tips for Writing Efficient Queries
1. Always use WHERE to filter data.
2. Avoid SELECT * in production queries.
3. Index columns used frequently in joins or where conditions.
4. Use EXPLAIN to analyze query execution.
5. Test queries with sample data first.

