Introduction to SQL Queries and Practical Examples
1. Introduction to SQL

e SQL (Structured Query Language) is a standard language for interacting with
relational databases.

e Key operations in SQL are summarized by CRUD:

C - Create — INSERT

R - Read — SELECT

U - Update — UPDATE

D - Delete — DELETE

e SQLisusedin databases like MySQL, Oracle, SQL Server, PostgreSQL, etc.

O O O O

2. SQL Query Types
2.1 Data Definition Language (DDL)
Used to define database structure:
e CREATE — Create tables or databases
e ALTER — Modify table structure
e DROP — Delete tables or databases
e TRUNCATE — Remove all data from a table

Example:

- Create a table

CREATE TABLE Students (
StudentID INT PRIMARY KEY,
Name VARCHAR(50),
Age INT,
Grade VARCHAR(5)

)

-- Alter table to add a new column
ALTER TABLE Students ADD COLUMN Email VARCHAR(SO);

-- Drop table
DROP TABLE Students;

2.2 Data Manipulation Language (DML)
Used to manipulate data in tables:

e INSERT — Add new records

o UPDATE — Modify existing records

e DELETE — Remove records

Example:

-- Insert data

INSERT INTO Students (StudentID, Name, Age, Grade)
VALUES (4, 'Ali", 12, 'A");



- Update data
UPDATE Students
SET Age =13

WHERE StudentID = 1;

-- Delete data
DELETE FROM Students
WHERE StudentID = 1;

2.3 Data Query Language (DQL)
e SELECT — Read/retrieve data
e You can use WHERE, ORDER BY, GROUP BY, HAVING clauses.

Example:
-- Select all data
SELECT * FROM Students;

- Select specific columns
SELECT Name, Grade FROM Students;

- Filtering with WHERE
SELECT * FROM Students
WHERE Age > 12;

- Ordering
SELECT * FROM Students
ORDER BY Name ASC;

-- Aggregate functions

SELECT Grade, COUNT(*) AS TotalStudents
FROM Students

GROUP BY Grade

HAVING COUNT(*) > 1;

2.4 Data Control Language (DCL)
¢ GRANT — Give permissions
e REVOKE — Remove permissions

Example:
GRANT SELECT, INSERT ON Students TO 'user1';
REVOKE INSERT ON Students FROM 'user1’;

3. SQL Query Concepts

3.1 Filtering Data
e Use WHERE with operators: =, <>, >, <, >=, <=
e Use AND, OR, NOT for multiple conditions

SELECT * FROM Students
WHERE Age >= 12 AND Grade ="A',



3.2 Pattern Matching

e Use LIKE with % and _
- Names starting with 'A’
SELECT * FROM Students
WHERE Name LIKE 'A%';

-- Names with second letter'l'
SELECT * FROM Students
WHERE Name LIKE'_I%';

3.3 Null Handling

e ISNULL and IS NOT NULL
SELECT * FROM Students
WHERE Email IS NULL;

3.4 Joins
e Combine multiple tables
o INNER JOIN — Only matching rows
o LEFTJOIN — All rows from left table
o RIGHT JOIN — All rows from right table
o FULL OUTER JOIN — All rows from both tables

Example:

CREATE TABLE Classes (
ClassID INT PRIMARY KEY,
ClassName VARCHAR(50)

)

- Inner Join example

SELECT Students.Name, Classes.ClassName

FROM Students

INNER JOIN Classes ON Students.StudentID = Classes.ClassID;

3.5 Subqueries
e Nested query inside another query

SELECT Name FROM Students
WHERE Age > (SELECT AVG(Age) FROM Students);

3.6 SQL Functions
e Aggregate: SUM, COUNT, AVG, MIN, MAX
e String: CONCAT, LENGTH, UPPER, LOWER
e Date: NOW(), CURDATE(), DATE_ADD()

Example:

SELECT COUNT(*) AS TotalStudents FROM Students;

SELECT CONCAT(Name, ' (', Grade, ')") AS Info FROM Students;
SELECT NOW() AS CurrentDateTime;



4. Practical Exercises

Here are exercises to practice SQL:

Exercise 1: Create a table Employees with columns: EmpID, Name, Salary, Department.
Exercise 2: Insert 5 employee records.

Exercise 3: Retrieve all employees with salary > 50000.

Exercise 4: Update salary of employee EmpID=3 to 60000.

Exercise 5: Delete an employee record with EmplID=5.

Exercise 6: Retrieve employees ordered by Salary DESC.

Exercise 7: Find the total salary of each department.

Exercise 8: Create a table Departments and join with Employees to list employee names with
department names.

5. Tips for Writing Efficient Queries
1. Always use WHERE to filter data.
Avoid SELECT * in production queries.
Index columns used frequently in joins or where conditions.
Use EXPLAIN to analyze query execution.
Test queries with sample data first.

VoW



